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Symmetry of Arthur Parameters under Aubert Involution

Dubravka Ban∗

Abstract. For a generic irreducible representation π of the odd orthogonal
group SO(2n+1, F ) over a p-adic field F , we compute the Aubert involution π̂
and the corresponding L-parameter. We show that, among generic representa-
tions, only tempered representations are base points attached to A-parameters
and prove that in this case the A-parameters of π and π̂ are symmetric. In ad-
dition, we consider A-parameters ψ of SO(2n+ 1, F ) corresponding to certain
nontempered representations and prove that ψ and ψ̂ are symmetric.
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1. Introduction

This paper studies the effects of the duality operator on generic representations
of SO(2n + 1, F ) and corresponding L-parameters and A-parameters. It also
deals with classes of nontempered representations arising from considerations of
A-parameters of a certain type (see Theorem 3.1 for more details). In accordance
with Arthur’s conjectures [1, 2], attached to each A-parameter is a finite set of
equivalence classes of irreducible admissible representations, called an A-packet.
There is, however, a natural way to associate to each A-parameter a particular
representation; we call it a base point. We study effects of the duality opera-
tor on A-parameters via base points. The proof relies on recent fundamental
developments by Jiang-Soudry, Harris-Taylor and Henniart. It provides an inter-
esting illustration of the Langlands-Arthur functoriality formalism. Recall that
A-parameters and A-packets emerged from Arthur’s work on the question of how
nontempered representations should fit into the trace formula. There are very few
examples of nontempered parameters for larger groups, where Arthur’s formalism
has been confirmed.

The duality operator is a generalization of the Zelevinsky involution. The
Zelevinsky involution is an operator defined on the Grothendieck group of the cate-
gory of all smooth finite length representations of the general linear group GL(n, F )
[32]. This involution has many important properties. It relates a discrete series
representation to the corresponding Langlands quotient. The Zelevinsky involu-
tion on GL(n, F ) preserves unitarity. Furthermore, its action on A-parameters
can be precisely defined, as follows. Let

ψ : WF × SL(2,C)× SL(2,C)→ GL(n,C)

∗ Supported by a Research Fellowship of the Alexander von Humboldt Foundation.



2 Ban

be an A-parameter of GL(n, F ). Here, WF denotes the Weil group of F . Let π
be the representation of GL(n, F ) associated to ψ . Denote by π̂ the Zelevinsky
involution of π and by ψ̂ the A-parameter of π̂ . Then [32, 23, 29],

ψ̂(w, x, y) = ψ(w, y, x). (1)

In other words, the Zelevinsky involution acts on A-parameters by interchanging
two copies of SL(2,C). We say ψ and ψ̂ are symmetric.

The Zelevinsky involution allows generalizations to a connected reductive
quasi-split algebraic group G defined over F . Aubert [3], Schneider and Stuhler
[26], and Bernstein [8] have defined duality operators on the category of all smooth
finite length representations of G and on its Grothendieck group. The involutions
defined by Aubert and Schneider-Stuhler are the same on irreducible smooth
representations, after having fixed the sign of the Aubert duality operator in order
to get a positive element in the Grothendieck group. The Bernstein involution
differs by taking contragredient.

The duality operator sends an irreducible representation to an irreducible
representation. Other questions, related to important properties of the Zelevinsky
involution, are still open. Barbasch conjectured that the duality operator sends
an A-packet to an A-packet. If Barbasch’s conjecture holds, we may consider the
A-parameter associated to an A-packet and the A-parameter associated to the
packet obtained by applying the duality operator on the original packet. This raises
the question of the action of the involution on A-parameters. It is conjectured
that, as for general linear groups, the involution acts on A-parameters of G
by interchanging two copies of SL(2,C). Although the conjecture was known
previously, a precise statement is due to Hiraga [17]. In a joint work with Zhang
[6], we proved that, for a generic discrete series representation π of SO(2n+1, F ),
the A-parameters of π and π̂ are symmetric.

In this paper, we consider a generic representation π of SO(2n+1, F ). Let
φ be the L-parameter of π (defined by Jiang and Soudry in [19]). We compute the
Aubert involution π̂ and the corresponding L-parameter (Theorem 5.3). Then we
consider the A-parameters. We say that ψ is the A-parameter of π if φψ is the
L-parameter of π (see section 3. for the definition). Not all generic representations
have A-parameters in this sense. We show that, among generic representations,
only tempered representations are attached to A-parameters (Theorem 5.4). In
this case, we compare the A-parameters of π and π̂ and show that they are
symmetric. This is a generalization of the work with Zhang [6] on generic discrete
series representations. Symmetry of A-parameters has further consequences; for
example, it implies that a generic tempered representation of a Levi subgroup of
SO(2n+1, F ) and its involution have the same R-group, as conjectured by Arthur
(cf. [4, 5]).

We also consider certain classes of nontempered representations. Let π be
the representation of SO(2`+ 1, F ) with the A-parameter

ψ = φ⊗ Sk ⊗ Sn ⊕
⊕

i∈A

φi ⊗ S1 ⊗ S1, (2)

k ≥ 1, n = 2, 3. (For precise definitions, see section 2. and Theorem 3.1). Then
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π is nontempered. Let ψ̂ be the A-parameter of π̂ . We prove that

ψ̂ = φ⊗ Sn ⊗ Sk ⊕
⊕

i∈A

φi ⊗ S1 ⊗ S1,

i.e., ψ and ψ̂ are symmetric.

The base point associated to an L-parameter is determined from the work
of Jiang and Soudry [19]. They deal with the groups SO(2n + 1, F ) and in this
paper we consider the same series of groups. In view of the recent work by Cogdell,
Kim, Piatetski-Shapiro and Shahidi [12], we expect our methods can be applied
to other series of classical p-adic groups.

We now give a short summary of the paper. In section 2., we recall some
basic definitions. The A-parameters given by equation (2) are considered in section
3. We prove that ψ and ψ̂ are symmetric (Theorem 3.1). In section 4., we review
Muić’s classification of generic representations of SO(2n+ 1, F ). In section 5., we
study the effects of the duality operator on generic representations of SO(2n+1, F )
and corresponding L-parameters and A-parameters.

Let us mention that in the paper we are not assuming any conjecture. The
conjectures described above are given to explain the motivation for the work done
in this paper.

Before closing the introduction, I would like to thank the mathematicians
who helped me during different stages of the project. I learned about the conjecture
on involution and A-parameters from Anne-Marie Aubert and Peter Schneider in
Luminy, 2002, and about the importance of the conjecture from James Arthur dur-
ing the Clay Mathematics Institute Summer School at the Fields Institute, 2003.
This paper has benefited from discussions with Dan Barbasch, Bob Fitzgerald,
David Goldberg, Chris Jantzen, Gordan Savin and Freydoon Shahidi. I thank
them all. Finally, I thank the referees for valuable comments.

2. Preliminaries

In this section, we recall some basic definitions. We consider the group G =
SO(2n+ 1, F ) or G = GL(m,F ) over a nonarchimedean local field F of charac-
teristic zero. For both groups, we fix the Borel subgroup B ⊂ G consisting of all
upper triangular matrices in G and the maximal torus T ⊂ B consisting of all
diagonal matrices in G. Let ∆ denote the corresponding set of simple roots.

Parabolic induction and segments Let P be a standard parabolic subgroup
of G, i.e., a parabolic subgroup containing B . Let M be the unique Levi subgroup
of P containing T . We call such M a standard Levi subgroup of G. Denote by
iG,M the functor of parabolic induction and by rM,G the Jacquet functor [9, 11].
For admissible representations ρi of GL(ki, F ), i = 1, 2, define

ρ1 × ρ2 = iGL(k1+k2,F ),GL(k1,F )×GL(k2,F )(ρ1 ⊗ ρ2).

Similarly, if ρ is an admissible representation of GL(k, F ) and σ admissible
representation of SO(2`+ 1, F ), define

ρo σ = iSO(2(k+`)+1,F ),GL(k,F )×SO(2`+1,F )(ρ⊗ σ).
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Define ν = |det|. We say the pair (ρ, σ) satisfies (Cα) if ν±αρ o σ is reducible
and νβρo σ is irreducible for |β| 6= α .

Let ρ be an irreducible supercuspidal representation of GL(k, F ) and
m ≤ n integers. The set [νmρ, νnρ] = {νmρ, νm+1ρ, . . . , νnρ} is called a segment
[32]. The induced representation νnρ× νn−1ρ×· · ·× νmρ has a unique irreducible
subrepresentation, which we denote by δ[νmρ, νnρ], and a unique irreducible quo-
tient, which we denote by ζ[νmρ, νnρ]. A segment Σ is called balanced if it is of
the form Σ = [ν−mρ, νmρ], with ρ unitary. The segment Σ is balanced if and
only if δ(Σ) is square integrable. In this paper, when we use the segment notation
[νmρ, νnρ], we always assume ρ is unitary.

Two segments Σ1 and Σ2 are said to be linked if Σ1 * Σ2 , Σ2 * Σ1 and
Σ1 ∪ Σ2 is a segment.

For a representation σ , we denote by σ̃ the contragredient of σ .

Aubert involution Let R(G) be the Grothendieck group of the category of all
smooth finite length representations of G. The Aubert duality operator DG is
defined on R(G) by

DG =
∑

Φ⊂∆

(−1)|Φ|iG,MΦ
◦ rMΦ,G

[3]. Here MΦ denotes the standard Levi subgroup corresponding to Φ. If π is an
irreducible admissible representation of G, we define π̂ = ±DG(π), taking the sign
+ or - so that π̂ is a positive element in the Grothendieck group. We call π̂ the
Aubert involution of π . It follows from [3] that π̂ is an irreducible representation.

Langlands classification for SO(2n + 1, F ) Suppose δi is a discrete series
representation of GL(ni, F ), i = 1, . . . , k and α1 ≥ · · · ≥ αk > 0 are real num-
bers. Let τ be a tempered representation of SO(2` + 1, F ). Then the induced
representation να1δ1× · · ·× ναkδk o τ has a unique irreducible quotient, which we
call the Langlands quotient and denote by Lq(ν

α1δ1, . . . , ν
αkδk, τ). Equivalently,

if β1 ≤ · · · ≤ βk < 0, then the induced representation νβ1δ1 × · · · × νβkδk o τ
has a unique irreducible subrepresentation, which we call the Langlands sub-
representation and denote by Ls(ν

β1δ1, . . . , ν
βkδk, τ). The connection between

the two classifications is given as follows: if π = Lq(ν
α1δ1, . . . , ν

αkδk, τ), then
π = Ls(ν

−α1 δ̃1, . . . , ν
−αk δ̃k, τ). Note that we are allowed to work with square in-

tegrable representations δi instead of tempered representations because of the
irreducibility of induced-from-unitary representations of GL(m,F ). In particular,
if ρ is a tempered representation of GL(m,F ), then ρ ∼= δ1 × · · · × δs , for some
square integrable representations δ1, . . . , δs .

Irreducible representations of SL(2,C) For each integer n ≥ 1 there exists
up to equivalence a unique n-dimensional irreducible representation of SL(2,C),
and it can be described as follows. Let V = PH

n−1[x, y] be the complex vector space
of homogeneous polynomials of degree n−1 in variables x, y . Then SL(2,C) acts
on V by change of variables. We denote this representation by Sn .

Langlands parameters and base points Let WF be the Weil group of F . We
take WF × SL(2,C) as the Weil-Deligne group [31, 21]. A Langlands parameter,
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or L-parameter, of SO(2n+ 1, F ) is a homomorphism

φ : WF × SL(2,C)→ Sp(2n,C)

such that φ(WF ) consists of semi-simple elements in Sp(2n,C) and the restriction
of φ to SL(2,C) is analytic [10, 22, 21]. The parameter φ is called tempered if the
image φ(WF ) is bounded. Two L-parameters are equivalent if they are conjugate
in Sp(2n,C). According to the Local Langlands Conjecture, each parameter φ
should parametrize a finite set of equivalence classes of irreducible admissible
representations of SO(2n + 1, F ), called the L-packet of φ. Jiang and Soudry
in [19] defined a bijection

φ ←→ π = Lq(ν
α1δ1, . . . , ν

αkδk, τ), τ generic (3)

between the set of equivalence classes of L-parameters of SO(2n + 1, F ) and
the set of equivalence classes of irreducible admissible representations of the form
π = Lq(ν

α1δ1, . . . , ν
αkδk, τ), with τ generic. The representation π is a member

of the L-packet of φ and plays an important role. We call it the base point
representation in the L-packet of φ.

Note that φ is an arbitrary L-parameter of SO(2n + 1, F ), while the
representation π is of specific type. If π is tempered, then π = τ is generic.
In general case, π is a representation such that the corresponding Langlands
data are generic. Jiang and Soudry describe explicitly the bijection (3). For π
generic, the description of φ is based on Muić’s classification of irreducible generic
representations of SO(2n + 1, F ). We will review the classification in section 4.
The corresponding L-parameter is given in Theorem 5.3.

Now, we describe the L-parameter φ associated to the representation π =
Lq(ν

α1δ1, . . . , ν
αkδk, τ). For i = 1, . . . , k , the representation δi is of the form

δi = δ(Σi), where Σi is a balanced segment, so ναiδi = δ[νciρi, ν
diρi]. We have

π = Lq(δ[ν
c1ρ1, ν

d1ρ1], . . . , δ[ν
ckρk, ν

dkρk], τ)

= Ls(δ[ν
−d1 ρ̃1, ν

−c1 ρ̃1], . . . , δ[ν
−dk ρ̃k, ν

−ck ρ̃k], τ).
(4)

Let ϕ(τ) denote the L-parameter of τ and φi the L-parameter of ρi . Then, by
Theorem 6.1 and Proposition 6.1 of [19], the L-parameter of π is

φ =

k⊕

i=1

(| · |
ci+di

2 φi ⊗ Sdi−ci+1 ⊕ | · |
−ci−di

2 φ̃i ⊗ Sdi−ci+1)⊕ ϕ(τ). (5)

Observe that ci+di

2
= αi is positive.

3. Arthur parameters and Aubert involution

In this section, we first recall the definition and some properties of A-parameters.
Then we consider a certain nontempered representation π . We compute its dual
π̂ . We prove that the A-parameters ψ and ψ̂ corresponding to π and π̂ are
symmetric (Theorem 3.1).
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Arthur parameters An Arthur parameter, or A-parameter, of SO(2n+ 1, F )
is a homomorphism

ψ : WF × SL(2,C)× SL(2,C)→ Sp(2n,C)

such that ψ(WF ) is bounded and included in the set of semi-simple elements
of Sp(2n,C) and the restriction of ψ to the two copies of SL(2,C) is analytic
[1, 2, 20]. In accordance with Arthur’s conjectures, attached to each A-parameter
ψ is a finite set of equivalence classes of irreducible admissible representations,
called the A-packet of ψ . To any A-parameter ψ , Arthur associates an L-
parameter φψ by

φψ(w, x) = ψ(w, x,

(
|w|1/2

|w|−1/2

)
).

We say that π is the base point attached to ψ if π is the base point attached
to φψ (see page 5). Contrary to L-packets, A-packets need not to be disjoint.
A representation π may occur in more than one A-packet. An A-parameter ψ
is called the A-parameter of π if φψ is the L-parameter of π . This definition is
justified by noticing that ψ 7→ φψ is injective [2]. If ψ is an A-parameter, we may
decompose it into a direct sum

ψ =

k⊕

i=1

(φi ⊗ Smi
⊗ Sni

),

where mi, ni ∈ Z+ , φi is a continuous homomorphism such that φi(WF ) is
bounded and consists of semisimple matrices and Sm is the m dimensional ir-
reducible complex representation of SL(2,C). Note that

φ(w)⊗ Sn(
(
|w|1/2

|w|−1/2

)
) =

(n−1)/2⊕

j=−(n−1)/2

φ(w)|w|j.

Therefore, for ψ = φ⊗ Sm ⊗ Sn , we have

φψ =

(n−1)/2⊕

j=−(n−1)/2

| · |jφ⊗ Sm. (6)

Symmetry of Arthur parameters under Aubert involution

Theorem 3.1. Let ρ be an irreducible unitary supercuspidal representation of
GL(p, F ) and σ an irreducible supercuspidal generic representation of SO(2q +
1, F ). Assume ρ ∼= ρ̃. Let

⊕
i∈A φi ⊗ S1 be the L-parameter of σ and φ be the

L-parameter of ρ.

Let π be the base point corresponding to the A-parameter

ψ = φ⊗ Sk ⊗ Sn ⊕
⊕

i∈A

φi ⊗ S1 ⊗ S1, (7)

k ≥ 1, n = 2, 3. Let ψ̂ be the A-parameter of π̂ . Then

ψ̂ = φ⊗ Sn ⊗ Sk ⊕
⊕

i∈A

φi ⊗ S1 ⊗ S1.
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Proof. Suppose ψ = φ ⊗ Sk ⊗ S2 ⊕
⊕

i∈A φi ⊗ S1 ⊗ S1, where k ∈ Z+ . From
(6), the corresponding L-parameter φψ is equal to

φψ = | · | 12φ⊗ Sk ⊕ | · |−
1
2φ⊗ Sk ⊕

⊕

i∈A

φi ⊗ S1.

Equations (4) and (5) implies that the base point representation attached to φψ is

π = Ls(δ[ν
− k

2 ρ, ν
k
2
−1ρ], σ). (8)

Next, suppose ψ = φ⊗Sk⊗S3⊕
⊕

i∈A φi⊗S1⊗S1. The corresponding L-parameter
φψ is equal to φψ = | · |φ⊗ Sk ⊕ φ⊗ Sk ⊕ | · |−1φ⊗ Sk ⊕

⊕
i∈A φi ⊗ S1. By (4),(5),

the base point representation attached to φψ is

π = Ls(δ[ν
− k

2
− 1

2 ρ, ν
k
2
− 3

2 ρ], τ0), (9)

where τ0 is the tempered generic representation with the L-parameter φ ⊗ Sk ⊕⊕
i∈A φi ⊗ S1.

Suppose ψ is given by equation (7). Then ψ is a homomorphism ψ :
WF×SL(2,C)×SL(2,C)→ GL(2`,C). We say that ψ is symplectic (respectively,
orthogonal) if ψ factors through Sp(2`,C) (respectively, SO(2`,C)). We will give
the conditions so that ψ is symplectic.

The L-parameter φ of ρ is a homomorphism φ : WF → GL(p,C). For
some representations r of GL(p,C), local-global methods attach factors L(s, ρ, r).
Conjecturally, we have L(s, r◦φ) = L(s, ρ, r), where the left hand side is the Artin
L-function, while the right hand side is the Langlands L-function. The cases
r = ∧2 and r = Sym2 are significant, due to important results of Shahidi [28] and
Henniart [16]. The result of Shahidi proves that exactly one of the two L-functions
L(s, ρ, Sym2) or L(s, ρ,∧2) has a pole at s = 0 ([28], Corollary 3.7, using ρ ∼= ρ̃).
In addition, (ρ, σ) satisfies (C 1

2
) if and only if L(s, ρ, Sym2) has a pole at s = 0.

This follows from [27] and [28], and it is explicitly stated in [25], Lemma 2.3. On
the other hand, Henniart proved the above equality of L-functions for r = ∧2

and r = Sym2 . We have L(s, ρ,∧2) = L(s,∧2φ), L(s, ρ, Sym2) = L(s, Sym2φ).
In addition, L(s,∧2φ) has a pole at s = 0 if and only if φ is symplectic, and
L(s, Sym2φ) has a pole at s = 0 if and only if φ is orthogonal. It follows that
(ρ, σ) satisfies (C 1

2
) if and only if φ is orthogonal.

If k is odd, then there is a basis of PH
k−1[x, y] such that imSk ⊂ SO(k,C). If

k is even, then there is a basis of PH
k−1[x, y] such that imSk ⊂ Sp(k,C). Therefore,

we have the following:

(C0), (C1) Assume φ factors through Sp(p,C). Then ψ factors through Sp(2`,C) for
k even and n = 2, or k odd and n = 3. In this case, ναρ o σ is reducible
for α = 0 or 1.

(C 1
2
) Assume φ factors through SO(p,C). Then ψ factors through Sp(2`,C) for
k odd and n = 2, or k even and n = 3. In this case, ναρ o σ is reducible
for α = 1

2
.

Suppose ν
1
2ρo σ is reducible. First, we consider

ψ = φ⊗ S2m+1 ⊗ S2 ⊕
⊕

i∈A

φi ⊗ S1 ⊗ S1,
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m ≥ 0. From (8), π = Ls(δ[ν
−m− 1

2ρ, νm− 1
2ρ], σ). Let τ be the representation

corresponding to the A-parameter φ⊗ S2⊗ S2m+1⊕
⊕

i∈A φi⊗ S1⊗ S1. Then, by
(6), the corresponding L-parameter is

m⊕

j=−m

| · |jφ⊗ S2 ⊕
⊕

i∈A

φi ⊗ S1

=

m⊕

j=1

(| · |jφ⊗ S2 ⊕ | · |−jφ⊗ S2)⊕ φ⊗ S2 ⊕
⊕

i∈A

φi ⊗ S1

and

τ = Ls(δ[ν
−m− 1

2ρ, ν−m+ 1
2ρ], δ[ν−m+ 1

2 ρ, ν−m+ 3
2 ρ], · · · , δ[ν− 3

2ρ, ν−
1
2ρ], δ(ν

1
2ρ; σ)).

We have to prove π̂ = τ . Let us consider the representation

Π = ζ[ν−m− 1
2 ρ, νm− 1

2ρ] o σ.

We analyze Π using [18]. Note that ζ[ν−m− 1
2 ρ, νm− 1

2ρ] = ν−
1
2 ζ[ν−mρ, νmρ]. The

representation ζ[ν−mρ, νmρ] is the unique irreducible quotient of νmρ× νm−1ρ×
· · · × ν−mρ. Equivalently, it is defined as the unique irreducible subrepresentation
of ν−mρ × ν−m+1ρ × · · · × νmρ. Therefore, ζ[ν−mρ, νmρ] is the representation
ζ(ρ, 2m + 1) of [18] and we can write Π = ναζ(ρ, n) o σ, with α = −1

2
and

n = 2m+ 1. It follows that Π has three irreducible subquotients, π1, π2, π3 given
in Proposition 3.6 (2) of [18]. In particular,

π3 = Ls([ν
−n+j+ 1

2ρ, ν−j−
3
2 ρ], ν−jδ(ρ, 2), ν−j+1δ(ρ, 2), . . . , ν−1δ(ρ, 2); δ(ν

1
2 ρ; σ)),

where δ(ρ, 2) = δ[ν−
1
2 ρ, ν

1
2 ρ], j = α + n

2
. In our case, j = m, so the segment

[ν−n+j+ 1
2 ρ, ν−j−

3
2 ρ] = [ν−m− 1

2 ρ, ν−m− 3
2 ρ] is empty and

π3 = Ls(ν
−mδ[ν−

1
2 ρ, ν

1
2 ρ], ν−m+1δ[ν−

1
2 ρ, ν

1
2 ρ], . . . , ν−1δ[ν−

1
2 ρ, ν

1
2 ρ], δ(ν

1
2 ρ; σ))

is equal to τ . Jacquet modules of π1, π2 and π3 are given in part (c) of Proposition

3.6 (2) in [18]. We observe that only π3 does not have terms of the form ν−m− 1
2 ρ⊗

. . . in its Jacquet module.

On the other hand, the dual of Π in the Grothendieck group is

δ[ν−m+ 1
2 ρ, νm+ 1

2ρ] o σ

and it has three components, π̂1, π̂2 and π̂3 . The Theorem in the Introduc-
tion of [30] tells us that the representation δ[ν−m+ 1

2 ρ, νm+ 1
2 ρ] o σ has two irre-

ducible square-integrable subrepresentations. The third component is the Lang-
lands quotient Lq(δ[ν

−m+ 1
2ρ, νm+ 1

2ρ]; σ) = Ls(δ[ν
−m− 1

2 ρ, νm− 1
2ρ]; σ). By Frobe-

nius reciprocity, the square-integrable subrepresentations have terms of the form
νm+ 1

2 ρ⊗ . . . in their Jacquet modules. Therefore, π̂1 and π̂2 are square integrable.
It follows π̂3 = Ls(δ[ν

−m− 1
2ρ, νm− 1

2 ρ]; σ). In other words, τ̂ = π and π̂ = τ .

Now, let ψ = φ⊗ S2m ⊗ S3 ⊕
⊕

i∈A φi ⊗ S1 ⊗ S1, m ≥ 1. By (9),

π = Ls(δ[ν
−m− 1

2 ρ, νm− 3
2ρ], δ([ν

1
2ρ, νm− 1

2 ρ]; σ)).
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Let τ correspond to φ⊗ S3 ⊗ S2m ⊕
⊕

i∈A φi ⊗ S1 ⊗ S1. Then

τ = Ls(δ([ν
−m− 1

2 ρ, ν−m+ 3
2 ρ]), . . . , δ([ν−

3
2 ρ, ν

1
2 ρ]), σ).

We will prove π̂ = τ . By Theorems 6.1 and 7.1 (Case 3a) of [18], τ is the unique
irreducible subquotient of

ν−1ζ[ν−m+ 1
2 ρ, νm− 1

2ρ] o ζ([ν−
1
2ρ, ν−m+ 1

2 ρ]; σ).

In particular, it is the unique irreducible quotient because it contains the unique
copy of ν ζ[ν−m+ 1

2ρ, νm− 1
2ρ] ⊗ ζ([ν

1
2ρ, νm− 1

2 ρ]; σ) in the Jacquet module of the
generalized degenerate principal series. Therefore, τ̂ is a subquotient of the rep-
resentation ν−1δ[ν−m+ 1

2ρ, νm− 1
2ρ] o δ([ν−

1
2 ρ, ν−m+ 1

2ρ]; σ). In addition, it contains

ν−1δ[ν−m+ 1
2 ρ, νm− 1

2 ρ] ⊗ δ([ν−
1
2 ρ, ν−m+ 1

2ρ]; σ) (by Théorème 1.7 (b) of Aubert).
This forces τ̂ = π .

Now, suppose νρ o σ or ρ o σ is reducible. The proofs are similar to the
case (C 1

2
). For n = 2, π = Ls(δ[ν

−mρ, νm−1ρ], σ) and the proof is based on
consideration of the representation Π = ζ[ν−mρ, νm−1ρ] o σ . The components of
Π are given in Proposition 3.10 of [18] in the case (C1) and in Proposition 3.11
of [18] in the case (C0). For n = 3, however, we obtain a new supercuspidal
representation σ′ in the Langlands data of π . Suppose νρo σ is reducible. Let

ψ = φ⊗ S2m+1 ⊗ S3 ⊕
⊕

i∈A

φi ⊗ S1 ⊗ S1,

m ≥ 1. Reducibility of νρ o σ implies φ ∼= φk , for some k ∈ A. Let σ′ be the
supercuspidal generic representation of SO(2q′ + 1, F ) associated by [19] to the
parameter ⊕

i∈A\{k}

φi ⊗ S1.

From (9), π = Ls(δ[ν
−m−1ρ, νm−1], δ([ρ, νmρ]; σ′)). Let τ be the representation

corresponding to the A-parameter φ⊗ S3⊗ S2m+1⊕
⊕

i∈A φi⊗ S1⊗ S1. Then, by
(6), the corresponding L-parameter is

m⊕

j=−m

| · |jφ⊗ S3 ⊕
⊕

i∈A

φi ⊗ S1

=

m⊕

j=1

(| · |jφ⊗ S3 ⊕ | · |−jφ⊗ S3)⊕ φ⊗ S3 ⊕ φ⊗ S1 ⊕
⊕

i∈A\{k}

φi ⊗ S1

and

τ = Ls(δ[ν
−m−1ρ, ν−m+1ρ], δ[ν−mρ, ν−m+2ρ], · · · , δ[ν−2ρ, ρ], δ([ρ, νρ]; σ′)).

Now, the proof π̂ = τ is analogous to the case (C 1
2
), using the Theorem 3.4 (3)(d)

of [7]. In the case when ρo σ is reducible, we have φ � φi , for all i ∈ A, and σ′

is the supercuspidal generic representation of SO(2q′ + 1, F ) associated by [19] to
the parameter

φ⊗ S1 ⊕
⊕

i∈A

φi ⊗ S1.

Then νρ o σ′ is reducible. We apply exactly the same arguments as in the case
(C 1

2
), based on composition factors described in Theorems 6.2 and 7.2 of [18].

This finishes the proof of Theorem 3.1.
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4. Classification

We review Muić’s classification of generic representations of the group
SO(2n+ 1, F ) given in [24].

(a) Let σ0 be a generic supercuspidal representation of SO(2n′ +1, F ) and
Σi = [ν−aiρi, ν

biρi], 2bi ∈ Z+, 2ai ∈ Z, ρi ∼= ρ̃i, i = 1, . . . , k a set of segments
satisfying

(i) bi > ai .

(ii) If (ρi, σ0) satisfies (C 1
2
), then bi ∈ 1

2
+ Z, ai ≥ −1

2
.

If (ρi, σ0) satisfies (C0), then bi ∈ Z, ai ≥ 0.
If (ρi, σ0) satisfies (C1), then bi ∈ Z, ai ≥ −1, ai 6= 0.

(iii) If ρi ∼= ρj for i 6= j , then either bi < aj or bj < ai .

The representation δ(Σ1∩Σ̃1)×· · ·×δ(Σk∩Σ̃k)oσ0 has a unique irreducible generic
subrepresentation, denote it by τ . The representation δ(Σ1\Σ̃1)×· · ·×δ(Σk\Σ̃k)oτ
has a unique irreducible subrepresentation which we denote by δ(Σ1, . . . ,Σk; σ0).
The representation δ(Σ1, . . . ,Σk; σ0) is square integrable and generic.

Conversely, if σ is an irreducible square integrable generic representation
of SO(2n + 1, F ), then there exists a unique σ0 and a unique set of segments
{Σ1, . . . ,Σk} satisfying (i) - (iii) such that σ ∼= δ(Σ1, . . . ,Σk; σ0).

(b) Let σ be an irreducible generic square integrable representation. Write
σ ∼= δ(Σ1, . . . ,Σk; σ0) as in (a). Suppose Σk+1, . . . ,Σl is a sequence of segments
satisfying

(iv) Segments Σk+1, . . . ,Σl are balanced and mutually different.

(v) δ(Σi) o σ is reducible, for i = k + 1, . . . , l .

Then, the representation δ(Σk+1)×· · ·×δ(Σl)oσ has a unique irreducible generic
subrepresentation, denote it by σ(ell) . This representation is elliptic and tempered.

(c) Suppose that Σl+1, . . . ,Σm is a sequence of segments satisfying

(vi) Segments Σi,Σj are not linked, for all l + 1 ≤ i < j ≤ m.

(vii) Segments Σi, Σ̃j are not linked, for all l + 1 ≤ i < j ≤ m.

(viii) δ(Σi) o σ(ell) is irreducible, for i = l + 1, . . . , m.

Then, the representation δ(Σl+1)× · · · × δ(Σm) o σ(ell) is irreducible, generic.

Conversely, let π be an irreducible generic representation of SO(2n+1, F ).
Then, there exist a square integrable representation σ , a sequence of segments
Σk+1, . . . ,Σl satisfying (iv)-(v), and a sequence of segments Σl+1, . . . ,Σm satisfying
(vi)-(viii), such that π ∼= δ(Σl+1) × · · · × δ(Σm) o σ(ell). The representation σ is
unique, the sequence Σk+1, . . . ,Σl is unique up to a permutation, and the sequence
Σl+1, . . . ,Σm is unique up to a permutation and taking contragredient.
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5. Generic representations

Let π be a generic representation of SO(2n+ 1, F ) and φ the L-parameter of π .
In this section, we compute the involution π̂ (Lemma 5.1) and the L-parameter φ̂
of π̂ (Theorem 5.3). We show that φ = φψ , for an A-parameter ψ , if and only if

π is tempered. In this case, π̂ is attached to an A-parameter ψ̂ . The parameters
ψ and ψ̂ are symmetric.

Langlands data We fix an irreducible generic representation π and associate
to it a square integrable representation σ and segments Σk+1, . . . ,Σl,Σl+1, . . . ,Σm

such that π ∼= δ(Σl+1)× · · · × δ(Σm) o σ(ell) as in section 4. Let

P = {1, . . . , k}, Q = {k + 1, . . . , l}, R = {l + 1, . . . , m}
and T = P ∪Q ∪ R. For i ∈ T , let

Σi = [ν−aiρi, ν
biρi].

We may assume that bi ≥ 0, bi ≥ ai , for all i ∈ T . This condition is satisfied for
i ∈ P ∪ Q. For i ∈ R , we can replace the segment Σi by its contragredient, if
necessary. Denote by r the local Langlands reciprocity map for GL(F ) [14, 15].
Let φi be the Langlands parameter of ρi , i.e., r(φi) = ρi. Recall that r(φ̃i) = ρ̃i .
For α = 0, 1

2
, 1, define the following sets:

Cα = {i ∈ P | (ρi, σ0) satisfies (Cα), ai ≥ 0},
C−1 = {i ∈ P | ai = −1},
P0 = {i ∈ P | ai ≥ 0} = C0 ∪ C 1

2
∪ C1,

T0 = {i ∈ T | 0 ∈ [−ai, bi]}.

Let `(σ0) = ρm+1 × · · · × ρp be the local Langlands functorial lift of σ0 (Theorem
1.1 of [19]). Define

A = {m + 1, . . . , p},
A0 = A \ {j ∈ A | ρj ∼= ρi for some i ∈ C−1}.

Lemma 5.1. Let π be an irreducible generic representation of SO(2n+ 1, F ).
Let σ be the generic square integrable representation and

Σk+1, . . . ,Σl,Σl+1, . . . ,Σm

the sequence of segments associated to π by section 4. For ji ∈ [−ai, bi], ji 6= 0,
define

εji =

{
1, if ji > 0,

−1, if ji < 0.

Let {(l1, ε1), . . . , (lt, εt)} be the multiset {(|ji|, εji) | i ∈ T, ji ∈ {−ai,−ai +
1, . . . , bi} \ {0}} written in a non-increasing order, with respect to the first co-
ordinate. For ls = |ji|, let ρls = ρi . Let τ0 be the unique generic component of(

×
i∈T0

ρi

)
o σ0. Then π̂ is the Langlands quotient of the induced representation

νl1ρε1l1 × · · · × ν
ltρεtlt o τ̂0,

where ρε is defined by ρε =

{
ρ, if ε = 1,

ρ̃, if ε = −1.
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Remark 5.2. The equivalence class of the irreducible representation ×
i∈T0

ρi

does not depend on the order of ρi, i ∈ T0 .

Proof. The proof is similar to the proof of Lemma 5.1, [6]. Let

π0 = (νb1ρ1⊗νb1−1ρ1⊗· · ·⊗ν−a1ρ1)⊗· · ·⊗(νbmρm⊗νbm−1ρm⊗· · ·⊗ν−amρm)⊗σ0.

Denote by M the standard Levi subgroup corresponding to π0 . We consider the
induced representation iG,M(π0). Then π is a subrepresentation of iG,M(π0) and,
by Corollary 4.2 of [4], π̂ is a quotient of iG,M(π0). Write π̂ as a Langlands
quotient

π̂ = Lq(ν
α1δ1, · · · , ναqδq, τ1), (10)

α1 ≥ · · · ≥ αq > 0 (see page 4). Then Lemma 4.2 [6] tells us that δi , i = 1, . . . , q
are supercuspidal unitary representations and τ1 is a subrepresentation of

δq+1 × · · · × δr o σ0,

where δi , i = q + 1, . . . , r are supercuspidal unitary representations. Therefore, π̂
is a subquotient of the representation induced from

π1 = να1δ1 ⊗ · · · ⊗ ναqδq ⊗ δq+1 ⊗ · · · ⊗ δr ⊗ σ0.

It follows from [11], Corollary 6.3.7 and from the description of the Weyl group
for odd-orthogonal groups that π1 can be obtained from π0 by permutations and
taking contragredients. The condition on α1, . . . , αq implies that the sequence
α1, . . . , αq is equal to l1, . . . , lt and {δ1, . . . , δq} = {ρε1l1 , . . . ρ

εt
lt
}. In addition, the

sequence δq+1, · · · , δr is up to a permutation equal to ρηi

i , i ∈ T0, with ηi = 1 or
-1. It follows from equation (10) that π̂ is the Langlands quotient

π̂ = Lq(ν
l1ρε1l1 , · · · , ν

ltρεtlt , τ1) (11)

and τ1 is a subrepresentation of

(
×
i∈T0

ρηi
i

)
o σ0. We claim

(
×
i∈T0

ρηi
i

)
o σ0

∼=
(

×
i∈T0

ρi

)
o σ0. To prove the claim, we first show that ρj o σ0

∼= ρ̃j o σ0 , for all

j ∈ T0 . If ρ̃j ∼= ρj , this is clear. If ρ̃j � ρj , then ρj o σ0 is irreducible, which
implies ρj o σ0

∼= ρ̃j o σ0 . Therefore, ρ
ηj

j o σ0
∼= ρj o σ0 , for all j ∈ T0 . Since

×
i∈T0

ρηi

i is irreducible and the factors commute, we have, for j ∈ T0 ,

(
×
i∈T0

ρηi

i

)
o σ0

∼=
(

×
i∈T0\{j}

ρηi

i

)
× ρηj

j o σ0
∼=
(

×
i∈T0\{j}

ρηi

i

)
× ρj o σ0

and the claim follows.

Now, equation (11) implies π is a component of (νl1ρε1l1×· · ·×ν
ltρεtlt oτ1 )̂ . In

the Grothendieck group, the Aubert involution commutes with parabolic induction
([3], Théorème 1.7). Therefore, π is a component of νl1ρε1l1 ×· · ·×ν

ltρε1lt o τ̂1. Since
π is generic, it follows from the properties of generic representations with respect
to parabolic induction that τ̂1 is generic (cf. Lemma 4.1 of [6]). Therefore, τ1 = τ̂0 .
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Langlands parameters

Theorem 5.3. Let π be an irreducible generic representation of SO(2n+1, F ).
Let σ be the generic square integrable representation and

Σk+1, . . . ,Σl,Σl+1, . . . ,Σm

the sequence of segments associated to π by section 4. Then the local Langlands
parameter of σ is

ϕ(σ) =

(⊕

i∈P

φi ⊗ S2bi+1

)
⊕
(⊕

i∈P0

φi ⊗ S2ai+1

)
⊕
(⊕

i∈A0

φi ⊗ S1

)
,

where φi is the Langlands parameter of ρi . The local Langlands parameter of π is

ϕ(σ)⊕
⊕

i∈Q∪R

(
| · |

bi−ai
2 φi ⊗ Sai+bi+1 ⊕ | · |

ai−bi
2 φ̃i ⊗ Sai+bi+1

)
,

which is equal to

ϕ(σ)⊕
(⊕

i∈Q

(φi ⊗ Sai+bi+1 ⊕ φi ⊗ Sai+bi+1)

)

⊕

(⊕

i∈R

(
| · |

bi−ai
2 φi ⊗ Sai+bi+1 ⊕ | · |

ai−bi
2 φ̃i ⊗ Sai+bi+1

))
.

The local Langlands parameter of π̂ is

(⊕

i∈T

bi⊕

j=−ai

(
| · |jφi ⊗ S1 ⊕ | · |−jφ̃i ⊗ S1

))
⊕

(⊕

i∈A

φi ⊗ S1

)
.

Proof. The local Langlands parameter of σ follows from [19], the proof of
Theorem 2.1. The description of ϕ(σ) is given in [6], Theorem 5.2.

The local Langlands parameter of π follows from [19]. First, according to
[19], the proof of Theorem 3.1,

ϕ(σ(ell)) = ϕ(σ)⊕
(⊕

i∈Q

(φi ⊗ Sai+bi+1 ⊕ φi ⊗ Sai+bi+1)

)
.

Define R∗ = {i ∈ R | Σi is balanced} and R∗∗ = R \R∗ . Let

σ(temp) =

(
×
i∈R∗

δ(Σi)

)
o σ(ell).

Then σ(temp) is a tempered generic representation and

ϕ(σ(temp)) = ϕ(σ)⊕

(⊕

i∈Q

(φi ⊗ Sai+bi+1 ⊕ φi ⊗ Sai+bi+1)

)

⊕
(⊕

i∈R∗

(
φi ⊗ Sai+bi+1 ⊕ φ̃i ⊗ Sai+bi+1

))
,
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by [19], the proof of Theorem 4.1. Now, π ∼=
(

×
i∈R∗∗

δ(Σi)

)
o σ(temp). The proof of

Theorem 5.2, [19], tells us that the Langlands parameter of π is

ϕ(σ(temp))⊕
(⊕

i∈R∗∗

(
| · |

bi−ai
2 φi ⊗ Sai+bi+1 ⊕ | · |

ai−bi
2 φ̃i ⊗ Sai+bi+1

))
,

which is equal to

ϕ(σ)⊕
⊕

i∈Q∪R

(
| · |

bi−ai
2 φi ⊗ Sai+bi+1 ⊕ | · |

ai−bi
2 φ̃i ⊗ Sai+bi+1

)
.

Let {(l1, ε1), . . . , (lt, εt)} be the multiset {(|ji|, εji) | i ∈ T, ji ∈ {−ai,−ai +
1, . . . , bi} \ {0}} written in a non-increasing order, with respect to the first co-
ordinate. For ls = |ji|, let ρls = ρi . Let τ0 be the unique generic component

of

(
×
i∈T0

ρi

)
o σ0. According to Lemma 5.1, π̂ is the Langlands quotient of the

induced representation
νl1ρε1l1 × · · · × ν

ltρεtlt o τ̂0.

In a similar way as in the proof of Theorem 5.2 [6], we prove that the
parameter of τ0 is

ϕ(τ0) =

(⊕

i∈T0

φi ⊗ S1

)
⊕
(⊕

i∈A

φi ⊗ S1

)
⊕
(⊕

i∈T0

φ̃i ⊗ S1

)
.

The representation τ0 is a component of

(
×
i∈T0

ρi

)
o σ0. Since the representations

ρi , i ∈ T0 and σ0 are supercuspidal, it follows from the definition of the Aubert

involution that τ̂0 is a component of

(
×
i∈T0

ρi

)
o σ0. Therefore, τ0 and τ̂0 are

tempered representations induced from the same discrete series representation(
⊗
i∈T0

ρi

)
⊗ σ0. It follows ϕ(τ̂0) = ϕ(τ0) ([6], page 340). By equations (4), (5),

the Langlands parameter of π̂ is
(

t⊕

s=1

(
| · |lsr−1(ρεsls )⊗ S1 ⊕ | · |−lsr−1(ρ̃εsls )⊗ S1

)
)
⊕ ϕ(τ0)

=



⊕

i∈T

bi⊕

j=−ai
j>0

(
| · ||j|φi ⊗ S1 ⊕ | · |−|j|φ̃i ⊗ S1

)



⊕



⊕

i∈T

bi⊕

j=−ai
j<0

(
| · ||j|φ̃i ⊗ S1 ⊕ | · |−|j|φi ⊗ S1

)

⊕ ϕ(τ0)

=



⊕

i∈T

bi⊕

j=−ai
j>0

(
| · |jφi ⊗ S1 ⊕ | · |−jφ̃i ⊗ S1

)


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⊕



⊕

i∈T

bi⊕

j=−ai
j<0

(
| · |−jφ̃i ⊗ S1 ⊕ | · |jφi ⊗ S1

)

⊕ ϕ(τ0).

This is equal to



⊕

i∈T

bi⊕

j=−ai
j 6=0

(
| · |jφi ⊗ S1 ⊕ | · |−jφ̃i ⊗ S1

)



⊕
(⊕

i∈T0

φi ⊗ S1

)
⊕
(⊕

i∈A

φi ⊗ S1

)
⊕
(⊕

i∈T0

φ̃i ⊗ S1

)

=

(⊕

i∈T

bi⊕

j=−ai

(
| · |jφi ⊗ S1 ⊕ | · |−jφ̃i ⊗ S1

))
⊕
(⊕

i∈A

φi ⊗ S1

)
.

Arthur parameters Let π be an irreducible generic representation of SO(2n+
1, F ) and π̂ the Aubert involution of π . Using the methods of Jiang and Soudry
[19], we were able to compute the L-parameters of π and π̂ (Theorem 5.3). Now,
we would like to compare the A-parameters of π and π̂ (if they exist). Our
methods are restricted to consideration of base point representations. We show
that, among generic representations, only tempered representations are base points
attached to A-parameters (Theorem 5.4). Suppose π is tempered and let ψ be
the A-parameter of π . In this case, π̂ also has the A-parameter, denote it by ψ̂ .
We show that ψ and ψ̂ are symmetric.

Theorem 5.4. Let π be an irreducible generic representation of SO(2n+1, F )
and φ the L-parameter of π . Suppose φ = φψ , for an A-parameter ψ : WF ×
SL(2,C)×SL(2,C)→ Sp(2n,C). Then π is tempered. Let ψ̂ be the A-parameter
of π̂ . Then

ψ̂(w, x, y) = ψ(w, y, x).

Proof. We associate to π a generic supercuspidal representation σ0 and a
sequence segments Σ1, . . .Σk,Σk+1, . . .Σl,Σl+1, . . .Σm as in section 4. The sets
P = {1, . . . , k}, Q = {k + 1, . . . , l}, R = {l + 1, . . . , m}, R∗ = {q ∈ R |
Σq is balanced} and R∗∗ = R\R∗ are defined as earlier. The sequence Σl+1, . . .Σm

is unique up to a permutation and taking contragredient, so we may assume

R∗ = {Σl+1, . . . ,Σp}, R∗∗ = {Σp+1, . . . ,Σm}.

For the same reason, we may assume that the exponents cq, dq in the segments

Σq = [νcqρq, ν
dqρq], q = p+ 1, . . . , m,

satisfy αq = cq+dq

2
> 0 and αp+1 ≥ · · · ≥ αm > 0. Then

π = Lq(δ[ν
cp+1ρp+1, ν

dp+1ρp+1], . . . , δ[ν
cmρm, ν

dmρm], τ),
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where the tempered representation τ is the unique generic component of the
representation (×q∈P∪Q∪R∗δ(Σq)) o σ0. The exponents aq, bq in the segments

Σq = [ν−aqρq, ν
bqρq], q = 1, . . . , p,

satisfy the conditions of section 4. Let φq be the L-parameter of ρq , q = 1, . . . , m.
The L-parameter φ of π is given by equation (5) and the L-parameter ϕ(τ) of τ
is given by Theorem 5.3.

Now, suppose φψ = φ, for the A-parameter ψ =
⊕r

i=1(φ
′
i⊗Smi

⊗Sni
). We

have

φψ =

r⊕

i=1

(ni−1)/2⊕

ji=−(ni−1)/2

| · |jiφ′
i ⊗ Smi

=
⊕

ni even

(ni−1)/2⊕

ji=1/2

| · |jiφ′
i ⊗ Smi

⊕ | · |−jiφ̃′
i ⊗ Smi

⊕
⊕

ni odd

(ni−1)/2⊕

ji=1

| · |jiφ′
i ⊗ Smi

⊕ | · |−jiφ̃′
i ⊗ Smi

⊕
⊕

ni odd

φ′
i ⊗ Smi

.

(12)

It follows from equations (5) and (12) that each φ′
i is equal to some φq and

ϕ(τ) =
⊕

ni odd
φ′
i⊗ Smi

. We want to show π = τ , i.e., ni = 1, for all i = 1, . . . , r
and R∗∗ = Ø.

Assume first, for some i, ni ≥ 4 and ni is even. We take the terms in
equation (12) coming from ji = 1

2
, 3

2
and apply equations (4), (5) to find the corre-

sponding segments. It follows the segments [ν−
mi
2

+1ρ′i, ν
mi
2 ρ′i], [ν

−mi
2

+2ρ′i, ν
mi
2

+1ρ′i]
are in the Langlands data of π . These two segments are linked, which contradicts
section 4. Similar arguments rule out the case ni ≥ 4, ni odd.

Therefore, ni ≤ 3, for all i. Assume now, for some fixed i, 1 < ni ≤ 3.
Assume in addition (mi, ni) 6= (1, 3). The terms in equation (12) coming from
ji = (ni − 1)/2 correspond to a certain imbalanced segment Σq = Σ = [νcρ, νdρ]
in the Langlands data of π . More precisely,

Σ = [ν−
mi
2

+1ρ, ν
mi
2 ρ], ni = 2,

Σ = [ν−
mi
2

+ 3
2 ρ, ν

mi
2

+ 1
2ρ], ni = 3.

If φ′
i⊗Smi

⊗Sni
is not symplectic, then ψ in addition contains the term φ̃′

i⊗Smi
⊗

Sni
(if φ̃′

i
∼= φ′

i , then φ′
i ⊗ Smi

⊗ Sni
appears with even multiplicity). The term

φ̃′
i⊗Smi

⊗Sni
gives the segment Σ′ = [νcρ̃, νdρ̃]. Then Σ and Σ̃′ = [ν−dρ, ν−cρ] are

linked, which contradicts condition (vii) in section 4. It follows that φ′
i⊗Smi

⊗Sni

is symplectic.

Define τ0 to be the tempered generic representation with the L-parameter
φ′
i ⊗ Smi

⊕ ϕ(σ0), for ni = 3, and τ0 = σ0 , for ni = 2. Define

π0 = Ls(δ(Σ̃), τ0).

Since φ′
i ⊗ Smi

⊗ Sni
is symplectic, the representation π0 is precisely the repre-

sentation considered in Theorem 3.1. In particular, it follows from the proof of
Theorem 3.1 that δ(Σ) o σ0 is reducible.
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On the other hand, we know from (viii) in section 4. that δ(Σ) o σ(ell) is
irreducible. Then Theorem 4.2 of [24] tells us one of the following two conditions
is satisfied

(*) δ(Σ) o σ0 is irreducible, or

(**) there exists t ∈ C−1 such that the segments [ρt] and Σ are linked.

Note that Σ and [ρ′] are not linked, for any unitary ρ′ . Since δ(Σ)oσ0 is reducible,
we see that the assumption 1 < ni ≤ 3, (mi, ni) 6= (1, 3) leads to a contradiction.

It remains to consider (mi, ni) = (1, 3). In this case, Σ = [νρ], so Σ and
Σ̃′ = [ν−1ρ] are not linked. Again, we have δ(Σ) o σ(ell) is irreducible, so one of
the conditions (*), (**) holds. In addition, Theorem 4.2 of [24] implies

(†) the segments Σ and Σt (respectively, Σ and Σ̃t ), t ∈ Q∪R∗ , are not linked,
and

(‡) the segments Σ and [ν−atρt, ν
atρt], t ∈ P , are not linked.

Notice that ϕ(τ) contains φ′
i⊗S1 , because ni is odd. From Theorem 5.3, we have

ϕ(τ) = ϕ(σ)⊕

( ⊕

t∈Q∪R

(
φt ⊗ S2bt+1 ⊕ φ̃t ⊗ S2bt+1

))
,

ϕ(σ) =

(⊕

i∈P

φt ⊗ S2bt+1

)
⊕

(⊕

t∈P0

φt ⊗ S2at+1

)
⊕

(⊕

t∈A0

φt ⊗ S1

)
.

We conclude from (†) that φ′
i⊗S1 is a part of ϕ(σ); otherwise, it would correspond

to the segment [ρ], which is linked to Σ. Similarly, (‡) implies that φ′
i ⊗ S1 does

not belong to
⊕

t∈P0
φt ⊗ S2at+1. Finally, the assumption φ′

i ⊗ S1 is a part of⊕
t∈A0

φt ⊗ S1 contradicts both (*) and (**). Therefore, (mi, ni) 6= (1, 3).

We have proved that π is tempered. Next, we will show that the A-
parameters of π and π̂ are symmetric. The proof is just an extension by the terms
corresponding to Q ∪ R of the proof of Corollary 5.1 in [6]. From Theorem 5.3,
we have

ψ =

(⊕

i∈P

φi ⊗ S2bi+1 ⊗ S1

)
⊕

(⊕

i∈P0

φi ⊗ S2ai+1 ⊗ S1

)
⊕

(⊕

i∈A0

φi ⊗ S1 ⊗ S1

)

⊕
( ⊕

i∈Q∪R

(
φi ⊗ S2bi+1 ⊗ S1 ⊕ φ̃i ⊗ S2bi+1 ⊗ S1

))
,

using the fact that all the segments Σi = [ν−aiρi, ν
biρi] = [ν−biρi, ν

biρi], i ∈ R are
balanced. Define

ψ̂ =

(⊕

i∈P

φi ⊗ S1 ⊗ S2bi+1

)
⊕
(⊕

i∈P0

φi ⊗ S1 ⊗ S2ai+1

)
⊕
(⊕

i∈A0

φi ⊗ S1 ⊗ S1

)

⊕
( ⊕

i∈Q∪R

(
φi ⊗ S1 ⊗ S2bi+1 ⊕ φ̃i ⊗ S1 ⊗ S2bi+1

))
.
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Then ψ̂(w, x, y) = ψ(w, y, x). We will prove that ψ̂ is the A-parameter of π̂ . We
have

φψ̂ =

(⊕

i∈P

bi⊕

j=−bi

| · |jφi ⊗ S1

)
⊕
(⊕

i∈P0

ai⊕

j=−ai

| · |jφi ⊗ S1

)
⊕
(⊕

i∈A0

φi ⊗ S1

)

⊕

( ⊕

i∈Q∪R

bi⊕

j=−bi

(
| · |jφi ⊗ S1 ⊕ | · |jφ̃i ⊗ S1

))

=

(⊕

i∈T

bi⊕

j=−ai

(
| · |jφi ⊗ S1 ⊕ | · |−jφ̃i ⊗ S1

))
⊕

(⊕

i∈A

φi ⊗ S1

)
.

We recognize this as the L-parameter of π̂ given in Theorem 5.3, finishing the
proof.
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